A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization

Jonathan Aziz, Daniel Scheeres, Jeffrey Parker University of Colorado Boulder

Jacob Englander NASA Goddard Space Flight Center

Motivation

Solar electric propulsion (SEP) is the primary means of employing low-thrust on a space mission.

Eclipse constraints are discontinuous and problematic for gradient-based trajectory optimization.

Contribution

A smoothed eclipse model suitable for gradient-based trajectory optimization.

Demonstrated improvement in mass delivered from LEO to GEO using a second-order optimizer.

Approach

• Introduce the *sunlight fraction*, γ , to include eclipse effects

 $power\ available = \gamma\ (computed\ power)$

• Sunlight fraction is a piecewise function.

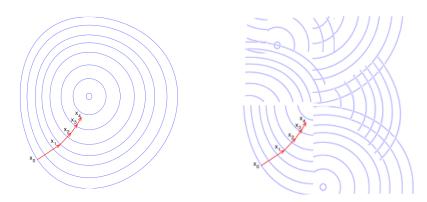
$$\gamma = 1$$

$$0 < \gamma < 1$$

$$\gamma = f_1$$

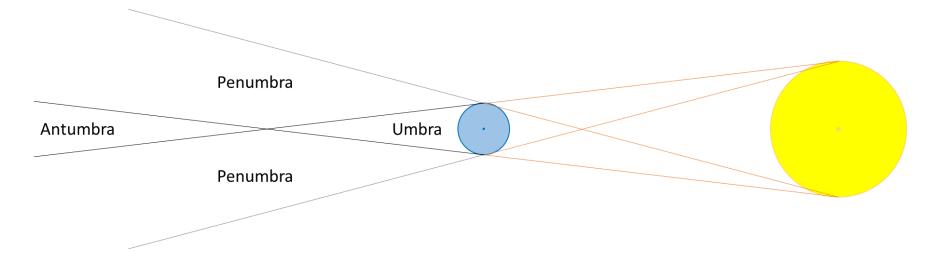
$$\gamma = f_2$$

• Discontinuous derivatives are a problem for gradient-based optimization.

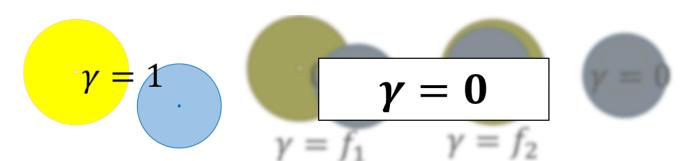


The Penumbra Constraint

• Disallow thrusting in shadow, even partial eclipse

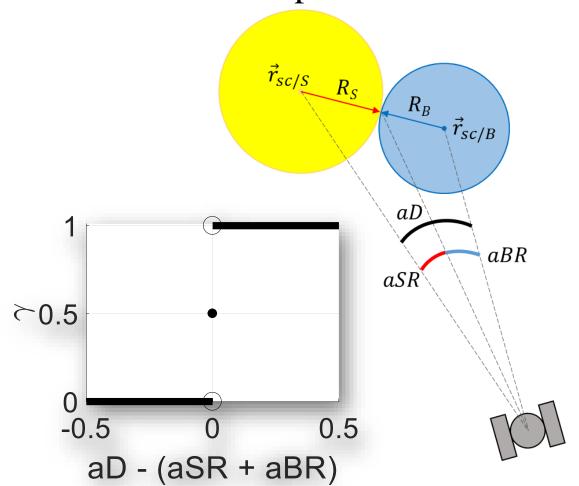


• Percent sunlight is now a step function



Heaviside Sunlight Fraction

• The Heaviside step function is half-valued at the transition.



Apparent Sun Radius

$$aSR = \sin^{-1} \frac{R_S}{r_{sc/S}}$$

Apparent Body Radius

$$aBR = \sin^{-1} \frac{R_B}{r_{sc/B}}$$

Apparent Distance

$$aD = \cos^{-1}\left(\frac{\vec{r}_{sc/B} \cdot \vec{r}_{sc/S}}{r_{sc/B}r_{sc/S}}\right)$$

Eclipse occurs when

$$aD < aSR + aBR$$

Logistic Sunlight Fraction

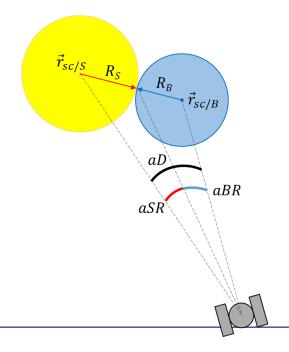
• The logistic function is a smooth approximation to the Heaviside step function,

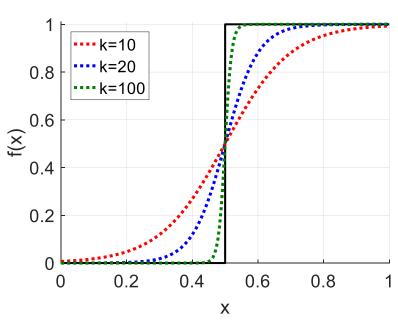
$$f(x) = \frac{1}{1 + e^{-k(x - x^*)}}$$

and is continuously differentiable.

Transition occurs at $x = x^*$.

Eclipse occurs at aD = aBR + aSR:

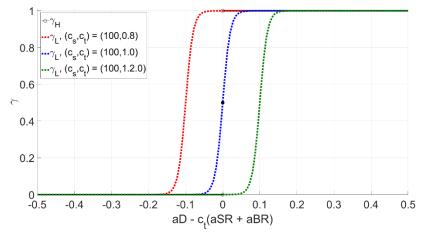


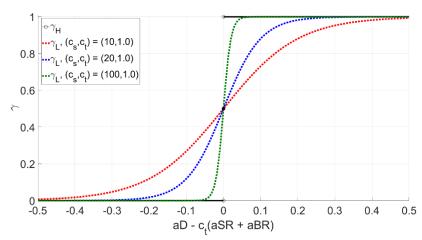


$$\gamma_L = \frac{1}{1 + e^{-c_s[aD - c_t(aSR + aBR)]}}$$

Sharpness and Transition Coefficients

• Sharpness coefficient, c_s , and transition coefficient, c_t , permit tuning of the smoothed eclipse model

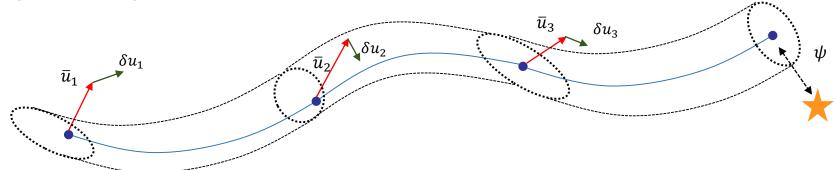




- Can select (c_s, c_t) to minimize error, numerical reasons, or operational considerations (early/late power down/up).
- For $c_t = 1.0$, find optimal $c_s \sim 289.78$ at Earth, $c_s \sim 432.35$ at Mars
 - holds across a range of spacecraft semi-major axes and eccentricities
 - central body and its heliocentric orbit are the drivers

LEO to GEO Transfer

- Reproduce transfer from Betts (2014)
 - min-fuel LEO to GEO in in 248.5 revolutions
 - construct initial guess with Lyapunov control thrust arcs and forced coast arcs through eclipse
 - refine solution with Sparse Optimization Suite (SOS)
 - direct transcription and sequential nonlinear programming
- Now use smoothed eclipse model and Hybrid Differential Dynamic Programming (HDDP)



- HDDP control updates minimize local quadratic models
- 1st and 2nd derivatives of cost function and dynamics w.r.t states, controls, multipliers, parameters

Problem Setup

• Minimize propellant consumed for LEO to GEO transfer in 248.5 revolutions

Table 1.: Spacecraft Parameters.

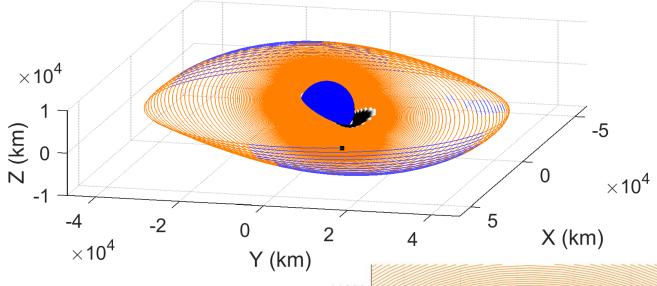
m_0	1000 kg	T_{max}	1.445 N
I_{sp}	1849.3477486671852 s	P_0	13.1031921568649 kW

Table 2.: Initial and Target Orbit States.

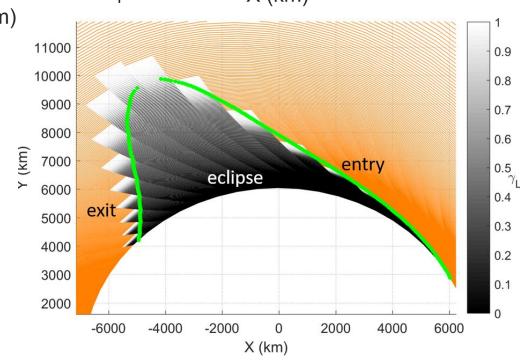
p_0	6878.14 km	p_f	42241.095482827557 km
f_0	0.0	f_f	0.0
g_0	0.0	g_f	0.0
h_0	-0.25396764647494369	h_f	0.0
k_0	0.0	k_f	0.0
L_0	π		
t_0	0.0		

- Modified Equinoctial Elements above (500 km circular 28.5° LEO)
- Perturbations: Lunar and Solar gravity, Earth $J_2 J_4$

Smoothed Eclipse Model Result

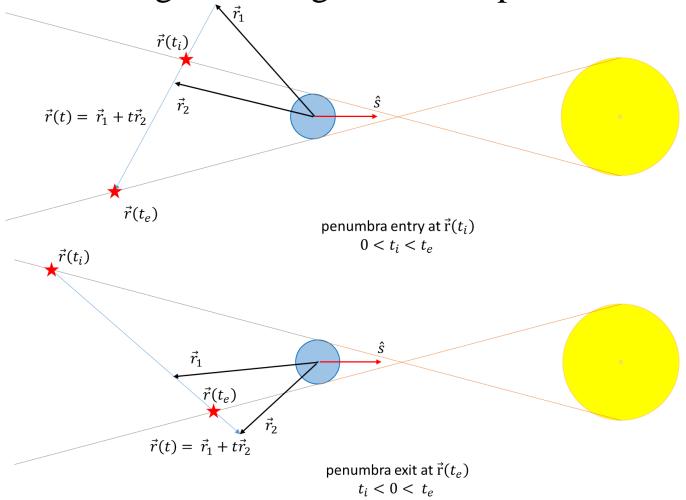


- Improved final mass to 733.29 kg from Betts' 718.79 kg
- Smoothed model eclipse detection is 'automatic', but suffers discretization error
- Violate penumbra constraint stepping through entry, and powers up late after exit



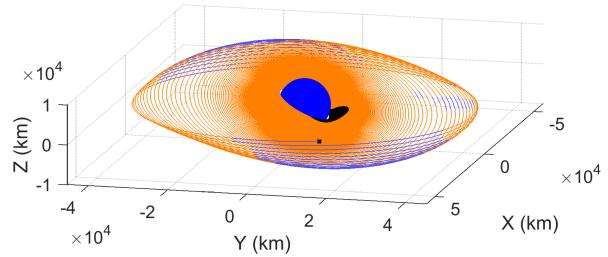
Penumbra Entry/Exit Detection

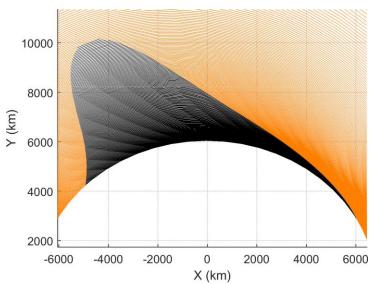
• Compute penumbra entry/exit locations as intersection of line between integration stages, and the penumbral cone



Refined Solution

• Insert integration stages at the penumbra entry/exit locations, use first solution as initial guess, assign $T_{max} = 0$ for shadow





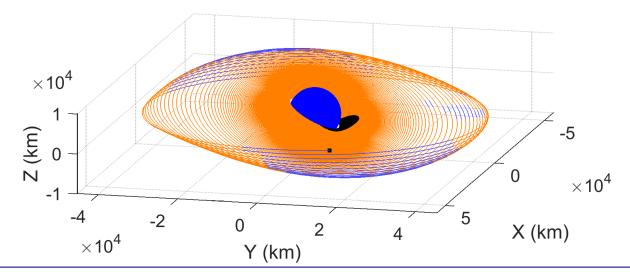
Iteration	m_f (kg)	t_f (days)
1	733.29	45.78
2	732.61	45.58
3	732.41	45.51
4	732.29	45.49
5	732.24	45.46
Betts ³⁾	718.79	43.13

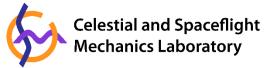
Conclusion

• Smoothed Eclipse Model presented as the logistic sunlight fraction:

$$\gamma_L = \frac{1}{1 + e^{-c_s[aD - c_t(aSR + aBR)]}}$$

- Demonstrated in a second-order gradient-based trajectory optimization algorithm, HDDP
- Improved delivered mass for LEO to GEO transfer

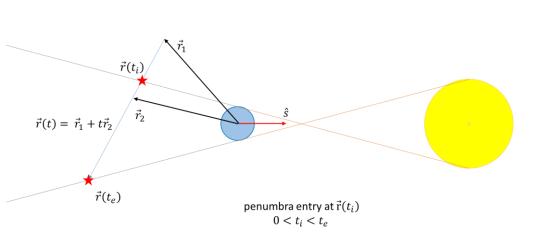


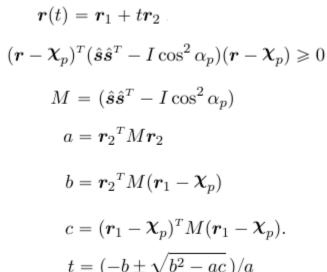


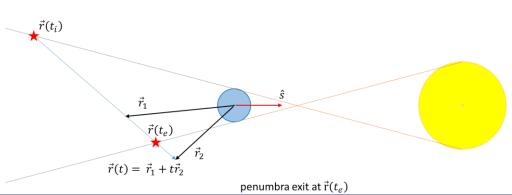
Backup Slides

Penumbra Entry/Exit Detection

• Compute penumbra entry/exit locations as intersection of line between integration stages, and the penumbral cone







 $t_i < 0 < t_e$

Refined Solution

• Insert integration stages at the penumbra entry/exit locations, use first solution as initial guess, assign $T_{max} = 0$ for shadow

$$\Delta \nu = \cos^{-1} \left(\frac{\boldsymbol{r_e}^T \boldsymbol{r_1}}{\|\boldsymbol{r_e}\| \|\boldsymbol{r_1}\|} \right)$$

$$\tau_e = \tau(\boldsymbol{X}_1, \tau_1, \Delta \nu)$$

$$X_e = f(X_1, \tau_e - \tau_1)$$

$$X_2 = f(X_e, \tau_2 - \tau_e)$$

